Los Sitios de La Cocina de Pasqualino Marchese

Principal Arriba Glosario Índice Novedades Contenido

Los espesantes

Los colorantes Los conservantes Los antioxidantes Los espesantes Los saborizantes

 

Gelificantes, Espesantes, Estabilizantes, Emulsionantes


Las substancias capaces de formar geles se han utilizado en la producción de alimentos elaborados desde hace mucho tiempo. Entre las sustancias capaces de formar geles está el almidón y la gelatina. Ésta, obtenida de subproductos animales, solamente forma geles a temperaturas bajas, por lo tanto cuando se desea que el gel se mantenga a temperatura ambiente, o incluso más elevada, debe recurrirse a otras substancias.

El almidón actúa muy bien como espesante en condiciones normales, pero tiene tendencia a perder líquido cuando el alimento se congela y se descongela. Algunos derivados del almidón tienen mejores propiedades y se utilizan con valores nutricionales semejantes y aportando casi las mismas calorías.

Se utilizan también otras substancias, bastante complejas, obtenidas de vegetales o microorganismos no digeribles por el organismo humano. Por esta última razón, al no aportar nutrientes, se utilizan ampliamente en los alimentos bajos en calorías. Algunos de estos productos no están bien definidos químicamente, al ser exudados de plantas, pero todos tienen en común cadenas muy largas formadas por la unión de muchas moléculas de azúcares más o menos modificados. Tienen propiedades comunes con el componente de la dieta conocido como "fibra", aumentando el volumen del contenido intestinal y su velocidad de tránsito.


E-400 Ácido algínico
E-401 Alginato sódico
E-402 Alginato potásico
E-403 Alginato amónico
E-404 Alginato cálcico
E-405 Alginato de propilenglicol

El ácido algínico se obtiene a partir de diferentes tipos de algas (Macrocrystis, Fucus, Laminaria, etc.) extrayéndolo con carbonato sódico y precipitándolo mediante tratamiento con ácido. Los geles que forman los alginatos son de tipo químico, y no son reversibles al calentarlos. Los geles se forman en presencia de calcio, que debe añadirse de forma controlada para lograr la formación de asociaciones moleculares ordenadas. Esta propiedad hace a los alginatos únicos entre todos los agentes gelificantes y muy útiles para la fabricación de piezas preformadas con aspecto de gambas, trozos de fruta, rodajas de cebolla o manzana, etc. Se pueden utilizar en España en conservas vegetales y mermeladas, en confitería, repostería, elaboración de galletitas,  nata montada y helados. También se utiliza en la elaboración de fiambres, patés, sopas deshidratadas, para mantener en suspensión la pulpa de frutas en los néctares y en las bebidas refrescantes que la contienen, en salsas y como estabilizante de la espuma de la cerveza. El E-405 no está autorizado en muchas de estas aplicaciones
No se absorben en el tubo digestivo, y tampoco se ven muy afectado por la flora bacteriana presente.

Se ha acusado a los alginatos, así como a otros gelificantes, de disminuir la absorción de ciertos nutrientes, especialmente metales esenciales para el organismo como hierro o calcio. Esto solo es cierto a concentraciones de alginato mayores del 4%, no utilizadas nunca en un alimento. Los alginatos no producen, que se sepa, ningún otro efecto potencialmente perjudicial.


E-406 Agar
El agar se extrae con agua hirviendo de varios tipos de algas rojas, entre ellas las del género Gellidium. El nombre procede del término malayo que designa las algas secas, utilizadas en Oriente desde hace muchos siglos en la elaboración de alimentos. A concentraciones del 1-2% forma geles firmes y rígidos, reversibles al calentarlos, pero con una característica peculiar, su gran histéresis térmica. Esta palabra designa la peculiaridad de que exista una gran diferencia entre el punto de fusión del gel (más de 85oC) y el de su solidificación posterior (según el tipo, menos de 40ºC).
En España está autorizado su uso en repostería y en la fabricación de conservas vegetales, en derivados cárnicos, en la cuajada, helados,  para formar la cobertura de conservas y semiconservas de pescado, así como en sopas, salsas y mazapanes. Teniendo en cuenta que es el más caro de todos los gelificantes, unas 20 veces más que el almidón, que es el más barato, se utiliza relativamente poco.


E-407 Carragenanos
Los carragenanos son una familia de substancias químicamente parecidas que se encuentran mezcladas en  productos comerciales. Tres de ellas son las más abundantes, difiriendo, además, en detalles de su estructura, en su proporción en las diferentes materias primas y en su capacidad de formación de geles. Se obtienen de varios tipos de algas (Gigartina, Chondrus, Furcellaria y otras), usadas ya como tales para fabricar postres lácteos en Irlanda desde hace más de 600 años.

Los denominados furceleranos (antes con el número E-408) son prácticamente idénticos, y desde 1978 se han agrupado con los carragenanos, eliminando su número de identificación.
Los carragenanos tiene carácter ácido, al tener grupos de sulfatos unidos a la cadena de azúcar, y se utilizan sobre todo como sales de sodio, potasio, calcio o amonio. Forman geles térmicamente reversibles, y es necesario disolverlos en caliente. Algunas de las formas resisten la congelación, pero se degradan a alta temperatura en medio ácido.

Los carragenanos son muy utilizados en la elaboración de postres lácteos, ya que interaccionan muy favorablemente con las proteínas de la leche.

A partir de una concentración del 0,025% los carragenanos estabilizan suspensiones y a partir del 0,15% proporcionan ya texturas sólidas. En España está autorizado su uso en derivados lácteos, conservas vegetales, para dar cuerpo a sopas y salsas, en la cerveza, como cobertura de derivados cárnicos y de pescados enlatados, etc. Estabiliza la suspensión de pulpa de frutas en las bebidas derivadas de ellas. Se utiliza a veces mezclado con otros gelificantes, especialmente con la goma de algarroba (E-410).

La seguridad para la salud del consumidor en la utilización de los carragenanos como aditivos alimentarios ha sido cuestionada desde hace bastantes años. Cantidades muy altas de esta sustancia son capaces de inducir la aparición de úlceras intestinales en  cobayas. Sin embargo este hecho es propio de este animal, porque las úlceras no se producen ni en otros animales, ni en el hombre. Más serio parece ser el efecto de lo que se conoce como carragenano degradado, producido al romperse las cadenas de carragenano normal, del que se demostró en 1978 que a dosis relativamente altas es capaz de producir alteraciones en el intestino de la rata que pueden llegar hasta el cancer colorrectal. Además, parte de los fragmentos pueden absorberse, pasando a la circulación y siendo captados y destruidos por los macrófagos, uno de los tipos de células especializadas del sistema inmune. Esta captación puede estar relacionada con ciertos trastornos inmunológicos observados también en animales, así como en el mecanismo de afectación intestinal. El carragenano degradado no se encuentra presente en proporciones significativas en el carragenano usado en la industria, ya que al no ser capaz de formar geles no tiene utilidad. Su eventual presencia puede detectarse midiendo la viscosidad del que se va a utilizar como materia prima en la industria . Estas medidas, con niveles mínimos que debe superar el producto destinado a uso alimentario, son requisitos legales en muchos países, incluidos los de la CE.


E-440 i Pectinas
E-440 ii Pectina amidada
La pectina es un polisacárido natural, uno de los constituyentes mayoritarios de las paredes de las células vegetales, y se obtiene a partir de los restos de la industria de fabricación de zumos de naranja y limón y de la fabricación de la sidra. Es más barato que todos los otros gelificantes, con la excepción del almidón. Forman geles en medio ácido en presencia de cantidades grandes de azúcar, situación que se produce en las mermeladas, una de sus aplicaciones fundamentales.
Además de  mermeladas y  otras conservas vegetales, se utiliza en repostería y en la fabricación de derivados de zumos de fruta.
El principal efecto indeseable del que se ha acusado a las pectinas es que inhiben la captación de metales necesarios para el buen funcionamiento del organismo, como el calcio, zinc o hierro. Respecto a esta cuestión, se puede afirmar que no interfieren en absoluto con la captación de ningún elemento, con la posible excepción del hierro. En este último caso, los diferentes estudios son contradictorios. La ingestión de pectinas tiene por el contrario varias ventajas claras. Se ha comprobado que, en primer lugar, hacen que la captación por el aparato digestivo de la glucosa procedente de la dieta sea más lenta, con lo que el ascenso de su concentración sanguínea es menos acusado después de una comida. Esto es claramente favorable para los diabéticos, especialmente para aquellos que no son dependientes de la insulina.
La ingestión de pectinas reduce por otra parte la concentración de colesterol en la sangre, especialmente ligado a las lipoproteínas de baja y muy baja densidad. Esta fracción del colesterol es precisamente la que está implicada en el desarrollo de la arteriosclerosis, por lo que la ingestión de pectinas puede actuar también como un factor de prevención de esta enfermedad. El mecanismo exacto de este fenómeno no se conoce con precisión, pero parece estar ligado a que las pectinas promueven una mayor eliminación fecal de esteroles.
En resumen, puede concluirse que la ingestión de pectinas a los niveles presentes en los alimentos vegetales, o en los usados como aditivos, no solamente no es perjudicial para la salud sino que incluso es beneficioso.
Las pectinas, especialmente las presentes en el pomelo, han sido objeto de diversas campañas publicitarias en las que se pretende que, en forma de cápsulas o píldoras, permiten conseguir pérdidas de peso casi milagrosas, lo que es totalmente falso.


Goma Gellan
Es un producto recientemente introducido en los Estados Unidos, habiéndose autorizado su utilización en la fabricación de helados y mermeladas a finales de 1990. Es un polisacárido extracelular elaborado por un microorganismo, Pseudomonas elodea, cuando crece sobre materiales azucarados. Es capaz de formar geles en presencia de calcio o de ácidos con concentraciones de polisacárido tan bajas como el 0,05%. La empresa fabricante ha solicitado también la autorización para su uso en la CE y en otros países.

Gomas vegetales
Son productos obtenidos de exudados (resinas) y semillas de vegetales, o producidas por microorganismos. Al contrario que las del grupo anterior, no suelen formar geles sólidos sino soluciones más o menos viscosas. Se utilizan, por su gran capacidad de retención de agua, para favorecer el hinchamiento de diversos productos alimentarios, para estabilizar suspensiones de pulpa de frutas en bebidas o postres, para estabilizar la espuma de cerveza o la nata montada, etc. En general son no digeribles por el organismo humano, aunque una parte es degradada por los microorganismos presentes en el intestino. Asimilables metabólicamente a la fibra dietética, pueden producir efectos beneficiosos reduciendo los niveles de colesterol del organismo. En las pectinas pueden encontrase mas detalles en este sentido.


E-410 Goma garrafín
La goma garrofín se encuentra en las semillas del algarrobo (Ceratonia siliqua), árbol ampliamente distribuido en los países de la cuenca del mediterráneo. Es un polisacárido muy complejo, capaz de producir soluciones sumamente viscosas y se emplea fundamentalmente como estabilizante de suspensiones en refrescos, sopas y salsas. Es la substancia de este tipo más resistente a los ácidos. También se utiliza como estabilizante en repostería, galletitas, panes especiales, mermeladas y conservas vegetales, nata montada o para montar y otros usos. Se emplea mezclado con otros polisacáridos para modular sus propiedades gelificantes. En particular, confiere elasticidad a los geles formados por el agar y por los carragenanos, que si no serían usualmente demasiado quebradizos, en especial los primeros.
No se conoce ningún efecto de la ingestión de esta sustancia que sea perjudicial para la salud.


E 412 Goma guar
Se obtiene a partir de un vegetal originario de la india (Cyamopsis tetragonolobus), cultivado actualmente también en Estados Unidos. Desde hace cientos de años la planta se utiliza en alimentación humana y animal. La goma se utiliza como aditivo alimentario solo desde los años cincuenta. Produce soluciones muy viscosas, es capaz de hidratarse en agua fría y no se ve afectada por la presencia de sales. Se emplea como estabilizante en helados, en productos que deben someterse a tratamientos de esterilización a alta temperatura y en otros derivados lácteos. También como estabilizante en suspensiones y espumas. No se conocen efectos adversos en su utilización como aditivo.


E 413 Goma tragacanto
La goma tragacanto es el exudado de un árbol (Astrogalus gummifer) presente en Irán y Oriente Medio. Es uno de los estabilizantes con mayor historia de utilización en los alimentos, probablemente desde hace más de 2000 años. Es resistente a los medios ácidos y se utiliza para estabilizar salsas, sopas, helados, derivados lácteos y productos de repostería.
No se conocen efectos secundarios indeseables tras la ingestión de cantidades bastante mayores que las utilizadas como aditivo. Está en estudio la posibilidad de que la goma tragacanto sea capaz de producir alergia en casos extremadamente raros.


E-414 Goma arábiga.
La goma arábiga es el exudado del árbol Acacia Senegalia y de algunos otros del mismo género. Se conocía ya hace al menos 4000 años. Es la más soluble en agua de todas las gomas, y tiene múltiples aplicaciones en tecnología de los alimentos: como fijador de aromas, estabilizante de espuma, emulsionante de aromatizantes en bebidas, en mazapanes, en caldos y sopas deshidratadas y en salsas; en todos estos casos la legislación española no limita la cantidad que puede añadirse. Se utiliza también como auxiliar tecnológico para la clarificación de vinos. Se considera un aditivo perfectamente seguro, no conociéndose efectos indeseables.


E-415 goma xantano
Es un producto relativamente reciente, utilizado solo desde 1969. Se desarrolló en Estados Unidos como parte de un programa para buscar nuevas aplicaciones del maíz, ya que se produce por fermentación del azúcar, que puede obtenerse previamente a partir del almidón de maíz, por la bacteria Xanthomonas campestris.
No es capaz por sí mismo de formar geles, pero sí de conferir a los alimentos a los que se añade una gran viscosidad empleando concentraciones relativamente bajas de substancia. La goma xantano es estable en un amplio rango de acidez, es soluble en frío y en caliente y resiste muy bien los procesos de congelación y descongelación. Se utiliza en emulsiones, como salsas, por ejemplo. También en helados y para estabilizar la espuma de la cerveza. Mezclado con otros polisacáridos, especialmente con la goma de algarrobo, es capaz de formar geles, utilizándose entonces en budines y otros productos. Es muy utilizado para dar consistencia a los productos bajos en calorías empleados en dietética. Prácticamente no se metaboliza en el tubo digestivo, eliminándose en las heces. No se conoce ningún efecto adverso y tiene un comportamiento asimilable al de la fibra presente de forma natural en los alimentos.


E 416 Goma Karaya
Se obtiene como exudado de un árbol de la india (Sterculia urens). Es una de las gomas menos solubles, de tal forma que en realidad lo que hace es absorber agua, dando dispersiones extremadamente viscosas. Tiene aplicación en la fabricación de sorbetes, merengues y como agente de unión en productos cárnicos. No se utiliza en España. Puede ocasionar reacciones alérgicas en algunas personas.

 

Derivados del almidón:

E 1200 Polidextrosa
E 1404 Almidón oxidado
E 1410 Fosfato de monoalmidón
E 1412 Fosfato de dialmidón
E 1413 Fosfato de dialmidón fosfatado
E 1414 Fosfato de dialmidón acetilado
E 1420 Almidón acetilado
E 1422 Adipato de dialmidón acetilado
E 1440 Hidroxipropil almidon
E 1442 Fosfato de dialmidón hidroxipropilado
E 1450 Octenil succinato sódico de almidon

La utilización del almidón como componente alimentario se basa en sus propiedades de interacción con el agua, especialmente en la capacidad de formación de geles. Abunda en los alimentos amiláceos (cereales, patatas) de los que puede extraerse fácilmente y es la más barata de todas las substancias con estas propiedades; el almidón más utilizado es el obtenido a partir del maíz. Sin embargo, el almidón tal como se encuentra en la naturaleza no se comporta bien en todas las situaciones que pueden presentarse en los procesos de fabricación de alimentos. Concretamente presenta problemas en alimentos ácidos o cuando éstos deben calentarse o congelarse, inconvenientes que pueden obviarse en cierto grado modificándolo químicamente.

Una de las modificaciones más utilizadas es el entrecruzado, que consiste en la formación de puentes entre las cadenas de azúcar que forman el almidón. Si los puentes se forman utilizando trimetafosfato, tendremos el fosfato de dialmidón; si se forman con epiclorhidrina, el éter glicérido de dialmidón y si se forman con anhídrido adípico el adipato de dialmidón. Estas reacciones se llevan a cabo fácilmente por tratamiento con el producto adecuado en presencia de un álcali diluido, y modifican muy poco la estructura, ya que se forman puentes solamente entre 1 de cada 200 restos de azúcar como máximo. Estos almidones entrecruzados dan geles mucho más viscosos a alta temperatura que el almidón normal y se comportan muy bien en medio ácido, resisten el calentamiento y forman geles que no son pegajosos, pero no resisten la congelación ni el almacenamiento muy prolongado (años, por ejemplo, como puede suceder en el caso de una conserva). Otro inconveniente es que cuanto más entrecruzado sea el almidón, mayor cantidad hay que añadir para conseguir el mismo efecto, resultando por lo mismo más caros.

Otra modificación posible es la formación de ésteres o éteres de almidón (substitución). Cuando se hace reaccionar el almidón con anhídrido acético se obtiene el acetato de almidón hidroxipropilado y si se hace reaccionar con tripolifosfato el fosfato de monoalmidón . Estos derivados son muy útiles para elaborar alimentos que deban ser congelados o enlatados, formando además geles más transparentes.

Pueden obtenerse derivados que tengan las ventajas de los dos tipos efectuando los dos tratamientos, entrecruzado y substitución. También se utilizan mezclas de los diferentes tipos.

Los almidones modificados se utilizan en la fabricación de helados, conservas y salsas espesas del tipo de las utilizadas en la cocina china.
En España se limita el uso de los almidones modificados solamente en la elaboración de yogures y de conservas vegetales. En los demás casos, el único límite es la buena práctica de fabricación. Los almidones modificados se metabolizan de una forma semejante al almidón natural, rompiéndose en el aparato digestivo y formando azúcares más sencillos y finalmente glucosa, que es absorbida. Aportan por lo tanto a la dieta aproximadamente las mismas calorías que otro azúcar cualquiera.

Algunos de los restos modificados (su proporción es muy pequeña, como ya se ha indicado) no pueden asimilarse y son eliminados o utilizados por las bacterias intestinales. Se consideran en general aditivos totalmente seguros e inocuos.
 


CELULOSA Y CELULOSAS MODIFICADAS:

 

E 460 i Celulosa microcristalina
E 460 ii Celulosa en polvo
E 461 Metilcelulosa
E 463 Hidroxipropilcelulosa
E 464 Hidroxipropilmetilcelulosa
E 465 Metilcelulosa
E 466 Carboximetilcelulosa

La celulosa es un polisacárido constituyente de las paredes de las células vegetales, representando la parte principal de materiales como el algodón o la madera. Es también el constituyente fundamental del papel. La celulosa utilizada en alimentación se obtiene rompiendo las fibras de la celulosa natural, despolimerizando por hidrólisis en medio ácido pulpa de madera. Los derivados de la celulosa (del E-461 al E-466) se obtienen químicamente por un proceso en dos etapas: en la primera, la celulosa obtenida de la madera o de restos de algodón se trata con sosa cáustica; en la segunda, esta celulosa alcalinizada se hace reaccionar con distintos compuestos orgánicos según el derivado que se quiera obtener.
La celulosa no es soluble en agua, pero sí dispersable. Los derivados son más o menos solubles, según el tipo de que se trate. Con la excepción de la carboximetilcelulosa, y a la inversa de los demás estabilizantes vegetales, son mucho menos solubles en caliente que en frío. La viscosidad depende mucho del grado de substitución. Actúan fundamentalmente como agentes dispersantes, para conferir volumen al alimento y para retener la humedad. Se utilizan en confitería, repostería y fabricación de galletitas. La carboximetilcelulosa se utiliza además en bebidas refrescantes, en algunos tipos de salchichas que se comercializan sin piel, en helados y en sopas deshidratadas.
La celulosa y sus derivados no resultan afectados por los enzimas digestivos del organismo humano, no absorbiéndose en absoluto. Se utilizan como componente de dietas bajas en calorías, ya que no aportan nutrientes, y se comportan igual que la fibra natural, no teniendo pues en principio efectos nocivos sobre el organismo. Una cantidad muy grande puede disminuir en algún grado la asimilación de ciertos componentes de la dieta.

 

Emulsionantes

Muchos alimentos son emulsiones de dos fases, una acuosa y otra grasa. Una emulsión consiste en la dispersión de una fase, dividida en gotitas extremadamente pequeñas, en otra con la que no es miscible. Una idea de su pequeñez la da el que en un gramo de margarina haya más de 10.000 millones de gotitas de agua dispersas en una fase continua de grasa. Las emulsiones son en principio inestables, y con el tiempo las gotitas de la fase dispersa tienden a reagruparse, separándose de la otra fase. Es lo que sucede por ejemplo cuando se deja en reposo una mezcla previamente agitada de aceite y agua. Para que este fenómeno de separación no tenga lugar, y la emulsión se mantenga estable durante un período muy largo de tiempo se utilizan una serie de substancias conocidas como emulsionantes, que se sitúan en la capa límite entre las gotitas y la fase homogénea. Las propiedades de cada agente emulsionante son diferentes, y en general las mezclas se comportan mejor que los componentes individuales. Como ejemplo de emulsiones alimentarias puede citarse la leche, que es una emulsión natural de grasa en agua, la manteca, la margarina, la mayoría de las salsas y las masas empleadas en repostería, entre otras.

 

E-322 Lecitina
Aunque su número de código correspondería a un antioxidante, su principal función en los alimentos es como emulsionante. La lecitina se obtiene como un subproducto del refinado del aceite de soja y de otros aceites; se encuentra también en la yema del huevo, y es un componente importante de las células de todos los organismos vivos, incluido el hombre. La lecitina comercial está formada por una mezcla de diferentes substancias, la mayor parte de las cuales (fosfolípidos) tienen una acción emulsionante.

Esta acción es muy importante en tecnología de alimentos. Por ejemplo, la lecitina presente en la yema del huevo es la que permite obtener la salsa mayonesa, que es una emulsión de aceite en agua. Su actividad como antioxidante se debe a la presencia de tocoferoles. La lecitina se utiliza en todo el mundo como emulsionante en la industria del chocolate, en repostería, pastelería, fabricación de galletitas, etc. También se utiliza en algunos tipos de pan, en margarinas, caramelos, grasas comestibles y sopas, entre otros. Es también el agente instantaneizador más utilizado en productos tales como el cacao en polvo para desayuno.

No se ha limitado la ingestión diaria admisible. La lecitina es un componente esencial de los jugos biliares, que aportan diariamente al intestino de 10 a 12 gramos, mucho más del que procede de la dieta, que es solo de uno ó dos gramos por día, contando tanto el propio alimento y el utilizado como aditivo. En el intestino facilita la absorción de las otras grasas, actuando como emulsionante de la misma forma que lo hace en los alimentos. Es considerado como un aditivo totalmente seguro, incluso por aquellas personas fanáticas de los alimentos naturales. En base a que se encuentra en gran cantidad en el cerebro, y a su capacidad de emulsionar otros lípidos, se ha propuesto en ocasiones su uso como tratamiento para enfermedades mentales o como adelgazante. Estas propuestas carecen totalmente de fundamento. El organismo humano es capaz de sintetizar cuanta lecitina necesite, tanto el cerebro como cualquier otro órgano. En cuanto a su supuesto efecto adelgazante, éste no solamente no es cierto, sino que al ser la lecitina un material rico en calorías, en realidad hace engordar.

 

E-442 Fosfáticos de amonio, emulsionante YN, lecitina YN 

Este emulsionante se obtiene sintéticamente por tratamiento con glicerol y posterior fosforilación y neutralización con amoniaco del aceite de colza hidrogenado. El resultado es una mezcla de varias substancias, principalmente fosfáticos de amonio (alrededor del 40%) y grasa que no ha reaccionado. Sus propiedades son semejantes a las de las lecitinas naturales. Se utilizan sobre todo en la elaboración del chocolate, aunque no en España o Francia.

E-430 Estearato de polioxietileno (8)

E-431 Estearato de polioxietileno (40)

E-432 Monolaurato de polioxietileno (20) sorbitano, polisorbato 20

E-434 Monopalmitato de polioxietileno (20) sorbitano, polisorbato 40

E-435 Monoestearato de polioxietileno (20) sorbitano, polisorbato 60

E-436 Triestearato de polioxietileno (20) sorbitano, polisorbato 65

Estas substancias se utilizan como emulsionantes, y del 432 al 436 se conocen más con el nombre de Twens, una marca registrada de Rohn & Haas. Se utilizan también como detergentes en distintas aplicaciones. En España está autorizado el uso de los Twens solamente en confitería, repostería y elaboración de galletas En determinadas condiciones experimentales estos emulsionantes son capaces de inducir alteraciones en el estómago de ratas con deficiencias nutricionales previas. La autorización de su uso como aditivo alimentario está en reconsideración por parte de la UE.

E-470 Sales cálcicas, potásicas y sódicas de los ácidos grasos

E-471 Mono y diglicéridos de los ácidos grasos

E-472 a Ésteres acéticos de los mono y diglicéridos de los ácidos grasos

E-472 b Ésteres lácticos de los mono y diglicéridos de los ácidos grasos

E-472 c Ésteres cítricos de los mono y diglicéridos de los ácidos grasos

E-472 d Ésteres tartáricos de los mono y diglicéridos de los ácidos grasos

E-472 e Ésteres monoacetiltartárico y diacetiltartárico de los mono y diglicéridos de los ácidos grasos

E-472 f Ésteres mixtos acéticos y tartáricos de los mono y diglicéridos de los ácidos grasos

Las sales sódicas de los ácidos grasos son el componente fundamental de los jabones clásicos. Las sales potásicas son también solubles en agua. Se utilizan para obtener emulsiones de grasas en agua, preferiblemente las mezclas de sales de varios ácidos grasos diferentes. Las sales cálcicas son insolubles en agua y se utilizan sobre todo como agentes antiapelmazantes

Los mono y diglicéridos de los ácidos grasos son los emulsionantes más utilizados (alrededor del 80% del total) y se utilizan desde los años treinta. Se utilizan para favorecer la incorporación de aire en las masas de repostería y en la fabricación de galletitas. También se utilizan en la elaboración de ciertas conservas vegetales y panes especiales. Los distintos tipos del E-472 están autorizados además en margarinas y otras grasas comestibles; en las primeras mejoran su extensibilidad y en las grasas utilizadas en repostería amplían el rango de temperaturas en el que se mantienen plásticas.

El E-471 y el E-472c son unos aditivos importantes de la margarina utilizada para freír, popular en algunos países europeos, para evitar las salpicaduras producidas por el agua que contiene. El E-472 está autorizado también en productos cárnicos tratados térmicamente.

Los acetoglicéridos pueden formar películas flexibles, comestibles, que se utilizan para recubrir alimentos en lugar de la parafina, menos aceptada por le consumidor al tratarse de un hidrocarburo procedente del petróleo. Los ácidos grasos y los mono y diglicéridos son productos de la degradación normal de todas las grasas de la dieta en el tubo digestivo, metabolizándose pues de la misma forma. No tienen limitación en cuanto a la ingestión diaria admisible y se utilizan como aditivos alimentarios en todo el mundo.

 

E-473 Sucroésteres, ésteres de sacarosa y ácidos grasos

E-474 Sucroglicéridos

Son substancias sintéticas, obtenidas haciendo reaccionar sacarosa (el azúcar común) con ésteres metílicos de los ácidos grasos, cloruro de palmitoilo o glicéridos, y extrayendo y purificando después los derivados. Son surfactantes no iónicos, ampliamente utilizados como emulsionantes. También se han utilizado como detergentes biodegradables. Tienen el inconveniente de que a temperaturas elevadas se destruyen por caramelización o por hidrólisis.

Se utilizan sobre todo en pastelería, repostería y elaboración de galletitas, a concentraciones, en turrones y mazapanes, así como en salsas, en margarinas y otros preparados grasos, en productos cárnicos tratados por el calor (fiambres, etc.) y en helados.

Los monoésteres, es decir, aquellos en los que la sacarosa tiene ligado un único ácido graso, se digieren prácticamente por completo, asimilándose como las demás grasas y azúcares. Los diésteres se digieren en una proporción menor del 50%, y los poliésteres no se digieren prácticamente nada, eliminándose sin asimilar.

La ingestión diaria admisible es de hasta 10 mg/Kg de peso, y no se conocen efectos adversos sobre la salud.

A causa de que los poliésteres no se digieran ha abierto la posibilidad de su uso como un substituto de las grasas, para preparar alimentos bajos en calorías.

 

E-475 Ésteres poliglicéridos de ácidos grasos alimentarios no polimerizados

Se utilizan en confitería, repostería, bollería y fabricación de galletitas para mejorar la retención de aire en la masa, en margarinas y otras grasas comestibles, especialmente en las grasas utilizadas para elaborar adornos de pastelería y para evitar el enturbiamiento de algunos aceites usados para ensaladas. Dado que favorece la formación de emulsiones de grasa en agua, se utiliza también en la fabricación de helados y salsas. En algunos países no están autorizados.

 

E-476 Polirricinoleato de poliglicerol

Consiste en la combinación de un polímero del ácido ricinoléico con el poliglicerol. Se puede utilizar en repostería, especialmente en recubrimientos de chocolate. La ingestión diaria admisible es de 75 mg/Kg de peso.

 

E-477 Ésteres de propilenglicol de los ácidos grasos

E-478 Ésteres mixtos de ácido láctico y ácidos grasos alimenticios con el glicerol y el propilenglicol

Se utilizan en pastelería, repostería y elaboración de galletas. Son especialmente útiles en la elaboración de cremas batidas y muy eficaces para lograr una buena distribución de la grasa en la elaboración de productos de repostería.

De sus dos constituyentes, los ácidos grasos son los componentes principales de todas las grasas domésticas, por lo que el componente extraño es el prolipenglicol. La ingestión diaria admisible de esta última substancia es de hasta 25 mg/kg de peso. No están autorizados en algunos países.

 

E-479 Aceite de soja oxidado por el calor y reaccionado con mono y diglicéridos de los ácidos grasos alimenticios

Este emulsionante es una mezcla compleja de productos obtenidos en las reacciones que lo definen. La presencia de productos de oxidación de los ácidos grasos insaturados se cuestiona cada vez más desde el punto de vista de la salubridad de los alimentos.

Este aditivo no se utiliza en España.

 

E-480 Ácido estearil-2-láctico

E-481 Estearoil 2 lactilato de sodio

E-482 Estearoil 2 lactilato de calcio

Son ésteres del ácido esteárico y un dímero del ácido láctico, obtenidos por la industria química, aunque los componentes son substancias naturales. Se encuentran entre los más hidrófilos de los emulsionantes. Se utilizan en pastelería, repostería y fabricación de galletas y panes. La ingestión diaria admisible es de 20 mg/Kg .

 

E-483 Tartrato de estearoilo

Este emulsionante se utiliza en España únicamente en repostería, bollería y elaboración de galletitas (hasta el 0.3%) y, sin limitación, en sopas deshidratadas. No se conocen efectos nocivos.

E-491 Monoestearato de sorbitano, Span 60

E-492 Triestearato de sorbitano, Span 65

E-493 Monolaurato de sorbitano, Span 20

E-494 Monooleato de sorbitano, Span 80

E-495 Monopalmitato de sorbitano, Span 40

Estas substancias más conocidas como Spans, marca registrada de Atlas Chemical Inc. son ésteres de los ácidos grados más comunes en las grasas alimentarias y el sorbitano, un derivado del sorbitol. Se obtienen por calentamiento del sorbitol con el ácido graso correspondiente.

Se utilizan como emulsionantes en pastelería, bollería, repostería y fabricación de galletas en una concentración máxima, en España, del 0,5% del peso seco del producto. La ingestión diaria admisible es de hasta 25 mg/kg de peso de ésteres de sorbitan en total.

 

H-4511 Caseinato cálcico

H-4512 Caseinato sódico

Las caseínas representan en su conjunto el 80% de las proteínas de la leche de vaca. Cuando la leche se acidifica, las caseínas precipitan. El tratamiento de ese precipitado con hidróxido cálcico o hidróxido sódico da lugar a los correspondientes caseinatos. Se producen sobre todo en Australia y Nueva Zelanda, utilizándose aproximadamente el 70% en alimentación y el resto en la industria, para la fabricación de colas y de fibras textiles. El caseinato sódico es soluble en agua, mientras que el cálcico no lo es. Este último se utiliza en aplicaciones en las que no debe disolverse, para no competir por el agua cuando se añade poca en el proceso de elaboración, como sucede a veces en repostería. Los caseinatos son resistentes al calentamiento, mucho más que la mayoría de las proteínas. Se utilizan en tecnología de los alimentos fundamentalmente por su propiedad de interaccionar con el agua y las grasas, lo que los hace buenos emulsionantes.

Se utilizan mucho en repostería, confitería y elaboración de galletas y cereales para desayuno, en substitución de la leche, de la que tienen algunas de sus propiedades. En general mejoran la retención de agua, haciendo que los productos que deben freírse retengan menor cantidad de aceite. Permiten obtener margarinas bajas en calorías al emulsionar mayor cantidad de agua en la grasa, base de este producto.

Los caseinatos se utilizan también como emulsionantes en la industria de fabricación de derivados cárnicos, embutidos y fiambres, debido a su resistencia al calor, adhesividad y capacidad para conferir jugosidad al producto. Son útiles para reemplazar al menos en parte a los fosfatos.

Las caseínas son proteínas y por lo tanto aportan también valor nutricional al producto. Su composición en aminoácidos es próxima a la considerada como ideal, y contienen además un cierto porcentaje de fósforo. El caseinato sódico está sin embargo prácticamente desprovisto de calcio, ya que aunque este elemento se encuentra asociado a la caseína presente en la leche, se pierde durante la primera etapa de su transformación. Son productos totalmente seguros para la salud y no tienen limitada la ingestión diaria admisible.

 

 

 


Pasee por los Sitios de La Cocina de Pasqualino Marchese

Principal ] Arriba ]

Enviar correo a  Contacto  con preguntas o comentarios citando lugar de residencia.
Copyright ©2012  La Cocina de Pasqualino Marchese

Última modificación: 21 de junio de 2014